Cuckoo Optimization Algorithm based Image Enhancement

نویسندگان

  • Manish Kumar Saini
  • Deepak Narang
چکیده

This paper proposes an extension to approach proposed in [13] for image enhancement using a combination of fuzzy logic technique and bio-inspired optimization algorithm. The transformation of the image data from RGB to HSV space has been done without altering HUE information. The image has been categorized into three regions with well tuned membership functions: underexposed, overexposed and mixed region on the basis of two threshold values. Gaussian membership function finds good suitability for fuzzification of overexposed and underexposed regions and mixed region is kept untouched which are further modified by a parametric sigmoid function. To get the quantitative analysis of the image; quality measures like fuzzy contrast, contrast and visual factors have been utilized. An objective function involves entropy and visual factor which is being optimized by bio-inspired optimization algorithm. Here, Cuckoo Optimization Algorithm (COA) has been used for parameter optimization and its results have been compared with the ACO based image enhancement on the scale of visual factor and execution time. COA based image enhancement found better than other approaches. The time taken to enhance the image has also been reduced as compared with latest approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function a...

متن کامل

Gray level image enhancement using nature inspired optimization algorithm: An objective based approach

Image enhancement plays a crucial role in almost every image processing system. The main aim of the image enhancement is to improve image quality by maximizing the information content in the given input image. Histogram Equalization (HE) and Adaptive Histogram Equalization (AHE) are most popular non-heuristic or classical techniques for image enhancement by preserving main features of the input...

متن کامل

A General Framework for 1-D Histogram-baesd Image Contrast Enhancement

In this paper, a general framework for image contrast enhancement algorithm based on an optimization problem is presented. Through this optimization, the intensities can be better distributed. The algorithm is based on the facts that the histogram of the enhanced image is close to the input image histogram and uniform distribution, simultaneously. Based on this fact, we obtain a closed form opt...

متن کامل

Optimal Design of a Brushless DC Motor, by Cuckoo Optimization Algorithm (RESEARCH NOTE)

This contribution deals with an optimal design of a brushless DC motor, using optimization algorithms, based on collective intelligence. For this purpose, the case study motor is perfectly explained and its significant specifications are obtained as functions of the motor geometric parameters. In fact, the geometric parameters of the motor are considered as optimization variables. Then, the obj...

متن کامل

Text Summarization Using Cuckoo Search Optimization Algorithm

Today, with rapid growth of the World Wide Web and creation of Internet sites and online text resources, text summarization issue is highly attended by various researchers. Extractive-based text summarization is an important summarization method which is included of selecting the top representative sentences from the input document. When, we are facing into large data volume documents, the extr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013